Расчет и изготовление лопастей ветрогенератора своими руками. Изготовление лопастей для ветрогенератора из пвх труб, алюминия, стекловолокна Лопасти из пластиковой трубы диаметром 315 мм

14.08.2023

Домашние ветряные электростанции – независимый альтернативный способ получения электроэнергии.

Установка такого оборудования позволяет существенно снизить траты на электричество при условии, что в местности присутствуют ветра хотя бы от 4 м/с.

А чем выше скорость ветра, тем большее количество энергии вырабатывается устройством.

В этой статье будет рассмотрен пошаговый план изготовления лопастей ветрогенератора своими руками.

Ветряные электростанции

Существует множество вариантов конструкции , для классификации которых есть базовые признаки:

  • расположение вращательной оси: вертикальное и горизонтальное;
  • количество лопастей: чаще от 1 до 6, но бывают варианты и с большим количеством;
  • тип вращательной лопасти: в виде крыла или паруса;
  • материал для изготовления лопасти: дерево, алюминий, ПВХ;
  • конструкция винтового колеса: с фиксированным или переменным шагом.

Продуктивность работы ветрогенератора в большей степени зависит от лопастей: от того, насколько правильно рассчитаны их размеры и количество, и удачно ли подобран материал для изготовления.

Сделать лопасти своими руками не составит труда, но перед тем, как начать работу, нужно изучить некоторые факты:

  1. Чем длиннее лопасти, тем легче они поддаются движению ветра, даже самого слабого. Однако большая длина будет замедлять скорость вращения ветряного колеса.
  2. На чуткость ветряного колеса влияет и количество лопастей: чем их больше, тем проще будет запускаться вращение. При этом показатели мощности и скорости будут снижаться, а значит, такое устройство непригодно для выработки электроэнергии, но отлично подойдет для подъемных работ.
  3. От диаметра и скорости вращения ветряного колеса зависит уровень шума, исходящего от устройства. Это нужно учитывать при установке ветрогенератора вблизи жилых домов.
  4. Большее количество энергии от ветра можно получить, установив ветряк как можно выше над уровнем земли (оптимально от 6 до 15 м). Поэтому зачастую установка происходит на крыше здания или на высокой мачте.

Создание лопастей поэтапно

При самостоятельном проектировании лопастей необходимо учитывать следующее:

    1. Для начала нужно определиться с формой лопасти. Для домашнего горизонтального ветрогенератора более удачной считается форма крыла. Благодаря своему строению она имеет меньшее аэродинамическое сопротивление. Такой эффект создается за счет отличия площадей внешней и внутренней поверхностей элемента, и поэтому появляется разница давления воздуха на стороны. Форма паруса имеет большее сопротивление и поэтому менее эффективна.

  • Дальше нужно определиться с количеством лопастей. Для местности, в которой присутствуют постоянные ветра, можно использовать быстроходные ветрогенераторы. Таким устройствам достаточно 2-3 лопастей для максимальной раскрутки двигателя.При использовании такого устройства в безветренной местности оно будет неэффективным, и будет просто простаивать в спокойную погоду. Еще одним недостатком трехлопастных ветрогенераторов является высокий уровень шума, по звуку напоминающий вертолет. Такая установка не рекомендуется вблизи густо заселенных домов.

Это интересно: при правильных расчетах успешно вырабатывать электроэнергию может ветрогенератор как с одной, так и с двумя-тремя лопастями. А при наличии всего одной лопасти устройство будет работать при любой, даже самой незначительной скорости ветра!

  • Расчет мощности ветряного устройства. Невозможно рассчитать точный показатель, поскольку мощность напрямую будет зависеть от погоды и движения ветра. Но существует прямая зависимость между диаметром ветряного колеса с количеством лопастей и мощностью оборудования.

Разобравшись с данными в таблице и поняв взаимосвязь, можно с помощью создания правильного винтового колеса влиять на мощность будущей конструкции

  • Выбор материала для создания лопастей. Выбор материалов для создания лопастей достаточно широк: ПВХ, стекловолокно, алюминий и др. Однако каждый из них имеет свои плюсы и минусы. Остановимся на выборе материала более подробно.

Лопасти из ПВХ-трубы

При подборе правильного размера и толщины труб, полученное колесо будет обладать высокой прочностью и эффективностью. Следует учитывать, что при сильных порывах ветра, пластик недостаточной толщины может не выдержать нагрузку, и разлететься на мелкие кусочки.

Для того чтобы обезопасить конструкцию, лучше уменьшить длину лопастей и увеличить их количество до 6. Для получения такого количества деталей как раз хватит одной трубы.

Для создания лопасти нужно взять трубу с минимальной толщиной стенки 4 мм и диаметром 160 мм, и нанести с помощью готового шаблона и маркера разметку будущих элементов.

Для того чтобы не допустить ошибки при самостоятельных расчетах, лучше воспользоваться готовым шаблоном, который легко можно найти в интернете. Поскольку без специальных знаний в этом деле не обойтись.

После порезки трубы полученные элементы нужно зашлифовать и скруглить по краям. Чтобы соединить лопасти, изготавливается самодельный стальной узел, с достаточной толщиной и прочностью.

Алюминиевые лопасти

Такая лопасть прочнее и тяжелей, а значит, и вся конструкция, удерживающая винт, должна быть массивней и устойчивей. К последующей балансировке колеса тоже нужно отнестись с повышенным вниманием.

По представленному шаблону из листа алюминия вырезается 6 одинаковых элементов, к внутренней стороне которых нужно приварить втулки с резьбой для дальнейшего крепления.

К соединительному узлу нужно приварить шпильки, которые будут соединяться с подготовленными на лопастях втулками.

Для того чтобы улучшить аэродинамические свойства такой лопасти, ей нужно придать правильную форму. Для этого ее нужно прокатать в неглубокий желоб так, чтобы между осью прокрутки и продольной осью заготовки образовался угол 10 градусов.

Преимуществом этого материала является оптимальное соотношение массы и прочности, в сумме с аэродинамическими свойствами. Но работа со стеклотканью требует особого мастерства и большого профессионализма, поэтому в домашних условиях такое изделие создать сложно.

Это важно: для бесперебойной работы ветрогенератора и долгих лет службы, ему требуется грамотный уход. Благодаря нескольким регулярным действиям самодельное устройство может проработать от 10 до 15 лет. К таким действиям относится смазывание подвижных элементов, проверка лопастей и подшипников на предмет повреждений, профилактика коррозии всех механизмов, регулировка болтов и покраска металлических деталей.

Можно сделать вывод, что наиболее подходящий материал для самостоятельной сборки ветряного колеса – ПВХ-труба. Она сочетает в себе прочность, легкость и хорошие аэродинамические характеристики. Причем, это очень доступный материал, а с работой справится даже новичок.

Из этого видео Вы узнаете, как сделать лопасти для ветрогенератора своими руками:


В последнее время все большую популярность приобретает использование в качестве альтернативного источника энергии ветрогенераторов, в том числе самодельных. Ветрогенератор состоит из турбины, флюгера и ветряного колеса. Укрепляется вся конструкция на достаточной высоте над землей – на крыше здания либо специальной мачте. Если собрать эффективный генератор в домашних условиях довольно затруднительно, то изготовить лопасти для ветряного колеса электрогенератора из подручных материалов своими руками под силу большинству домашних умельцев.


Давайте рассмотрим подробнее процесс изготовления лопастей ветрогенератора. Прежде всего, необходимо определиться с мощностью мини электростанции. От этого базового показателя будет завесить диаметр ветряного колеса и количество лопастей. Зависимость диаметра колеса от потребной мощности при заданном числе лопастей приведены в таблице ниже. Данные актуальны для средней скорости ветра 4 м/с.


Как видно из таблицы, практически осуществимым собственными силами является строительство ветрогенератора мощностью примерно до ста Ватт.

Определившись с мощностью будущей энергоустановки, необходимо выбрать материал изготовления и профиль лопастей ветрогенератора.

Самым очевидным решением представляется лопасть парусного типа, то есть плоский профиль на подобие «крыльев» ветряных мельниц. Такие лопасти чрезвычайно просты в изготовлении и могут быть без труда сделаны из любого достаточно прочного материала – жести, фанеры, пластика и т.д. Однако самое очевидное решение далеко не всегда самое оптимальное. Дело в том, что во вращении ветряного колеса с лопастями парусного типа не задействованы аэродинамические силы, вращение осуществляется только за счет давления ветрового потока. Эффективность такой конструкции крайне низкая, коэффициент использования энергии ветра (КИЭВ) не превышает 0,1-0,12, то есть в энергию преобразуется не более 10-12% энергии потока ветра. Скорее всего, при слабом ветре такое колесо не сможет вращать само себя, не говоря уже о выработке энергии в количестве, приемлемом для практического использования.

Гораздо более приемлемый вариант – ветряное колесо с лопастями, так называемого крыльчатого профиля. Внутренняя и внешняя стороны такой лопасти имеют разную площадь, благодаря чему создается разница давления воздуха на противоположные стороны крыла. Полученная аэродинамическая сила делает использование ветрового потока гораздо более эффективным, КИЭВ достигает 0,3-0,4.

Лопасти из ПВХ трубы

Не менее важным является выбор материала для изготовления лопастей ветрогенератора. Проще всего изготовить лопасти ветрогенератора из пластиковой трубы. ПВХ трубы, которые можно приобрести в любом строительном магазине – пожалуй, самый подходящий материал. Необходимо использовать трубы, обладающие необходимой толщиной стенки (предназначенные для канализации или напорного газопровода), иначе набегающий поток воздуха при достаточно сильном ветре может изогнуть лопасти, что приведет к разрушению их о мачту генератора.


Следует помнить, что лопасть ветрогенератора испытывает немалые нагрузки от центробежной силы, тем большие, чем длиннее лопасть. Скорость движения конечной части лопасти двухлопастного колеса бытового ветрогенератора исчисляется сотнями метров в секунду, что сопоставимо со скоростью пистолетной пули (оконечность лопасти колеса промышленного ветрогенератора может достигать сверхзвуковых скоростей).

Лопасть из ПВХ может не выдержать нагрузки на разрыв при столь высоких скоростях, а разлетающаяся со скоростью пули шрапнель осколков представляет реальную угрозу жизни и здоровью людей. Вывод очевиден – уменьшаем длину лопасти за счет увеличения количества лопастей. Кроме того, ветряное колесо с большим числом лопастей значительно проще в балансировке и создает меньше шума.

Рассмотрим изготовление лопастей для шестилопастного ветряного колеса диаметром 2 м из ПВХ трубы. Для обеспечения необходимой прочности на разрыв и изгиб толщина стенки трубы должна быть не менее 4 мм. Расчет профиля лопастей колеса ветрогенератора – сложный и трудоемкий процесс, требующий узкоспециальных знаний, поэтому для мастера-любителя рациональнее будет воспользоваться готовым шаблоном.

Шаблон нужно вырезать из бумаги, приложить к стенке трубы и обвести маркером. Повторить процедуру еще пять раз – из одной трубы должно получиться шесть лопастей. Разрезаем электролобзиком трубу по полученным линиям и получаем шесть почти готовых лопастей. Остается только зашлифовать места разрезов и округлить углы и края. Это придаст ветряному колесу аккуратный вид и снизит шумность работы.

Для соединения лопастей между собой и присоединения колеса к турбине нужно изготовить соединительный узел, представляющий вырезанный из стали диск с приваренными либо вырезанными заодно шестью стальными полосками. Конкретные размеры и конфигурация соединительного узла зависят от генератора либо двигателя постоянного тока, который будет служить сердцем ветряной мини электростанции. Укажем только, что сталь, из которой изготавливается соединительный узел, должна быть достаточной толщины, для того, чтобы колесо не гнулось под напором ветра.

Лопасти из алюминия

Другим вариантом лопастей ветряного колеса бытового ветрогенератора являются лопасти из алюминия. Такие лопасти обладают лучшими прочностными характеристиками относительно лопастей из ПВХ как на разрыв, так и на изгиб. Однако такие лопасти обладают большей массой, что предъявляет дополнительные требования к прочности конструкции в целом. Также более точной должна быть балансировка колеса.


Сначала, по заданным размерам изготавливается лекало из фанеры. По лекалу из алюминиевого листа вырезается шесть заготовок будущих лопастей. Заготовка прокатывается в желоб глубиной 10 мм таким образом, чтобы ось прокрутки составляла угол 10 градусов с продольной осью заготовки. Это делается для придания лопасти нужных аэродинамических характеристик. К внутреннему торцу лопасти приваривается крепежная втулка с нарезанной резьбой

Конструкция соединительного узла колеса с алюминиевыми лопастями несколько отличается от аналогичного узла колеса из ПВХ. К стальному диску привариваются не полоски, а шпильки в виде отрезков стального прута с резьбой, соответствующей резьбе втулок.

Лопасти из стекловолокна

Наиболее совершенными как по отношению прочность/масса, так и по аэродинамическим характеристикам являются лопасти для ветряного колеса, изготовленные из стекловолокна, точнее из сотканной из стекловолокна стеклоткани. Но следует учесть, что изготовление таких лопастей является наиболее трудоемким из приведенных вариантов, требует особых навыков и опыта работы с деревом и стеклотканью.

Самым сложным этапом сборки стеклопластиковых лопастей является изготовление деревянной матрицы . Матрица представляет готовый прообраз будущей лопасти, вытачивается из деревянного бруса по шаблонам.

После того, как матрица готова, можно приступать к изготовлению лопастей. Каждая лопасть будет состоять из двух половинок. Сначала матрицу необходимо тщательно натереть воском. Потом с одной стороны матрицы наносится слой эпоксидной смолы, на который укладывается лист стеклоткани. Далее сразу же, не дожидаясь застывания, наносится снова слой эпоксидной смолы, и снова слой стеклоткани. Таким образом наносятся 3-4 пары слоев. Не снимая с матрицы, оставляем полученную слоеную конструкцию высыхать около суток. После высыхания мы получили половину будущей лопасти. Операция повторяется с другой стороны матрицы.

Половинки лопастей склеиваются между собой эпоксидной смолой, во внутренний торец вклеивается деревянная пробка, которая будет служить для укрепления лопасти к ступице колеса. В пробку врезается втулка с резьбой. Ступицей служит соединительный узел, аналогичный тому, который мы рассматривали в предыдущем примере.

Балансировка ветряного колеса

После того, как лопасти для ветрогенератора сделаны, необходимо собрать колесо и провести его балансировку . Балансировка ветряного колеса производится в закрытом, достаточно просторном помещении. Важно чтобы воздух в помещении, которое будет служить балансировочным «полигоном» был достаточно неподвижен: движение колеса под действием движения воздуха может повлиять на результаты балансировки.


Балансировка ветряного колеса производится следующим образом. Колесо подвешивается в рабочее положение на достаточной высоте так, чтобы ничего не препятствовало свободному вращению колеса. Плоскость соединительного узла колеса была строго параллельна вертикальному подвесу. Останавливаем колесо до полной неподвижности и отпускаем. Колесо должно остаться неподвижным. Проворачиваем колесо вручную примерно на угол, равный 360/число лопастей, останавливаем, отпускаем и снова повторяем наблюдение. Повторяем до полного поворота колеса вокруг своей оси. Если остановленное и отпущенное колесо начинает самопроизвольно вращаться, значит, та часть колеса, которая стремится вниз, тяжелее. Нужно облегчить его, сточив край одной из лопастей.

Другое испытание на том же стенде покажет, все ли лопасти «укладываются» в плоскость вращения колеса. Для этого колесо полностью останавливается и с двух сторон одной из лопастей помещаются две не препятствующие вращению планки на расстоянии 2 мм от лопасти. При вращении колеса лопасти не должны задевать контрольные планки.

Как вы могли убедиться, ничего невыполнимого в собственноручной сборке ветряного колеса нет. Надеюсь, советы из этой статьи были вам полезны. Пробуйте разные варианты, экспериментируйте, и все у вас получится. Удачи!

С давних пор человечество использует силу ветра в своих целях. Ветряные мельницы, парусные корабли знакомы многим, про них пишут в книгах и снимают исторические фильмы. В наше время ветряной электрогенератор не потерял свою актуальность, т.к. с его помощью можно получить бесплатное электричество на даче, которое может пригодиться, если отключат свет. Поговорим о самодельных ветряках, которые можно собрать из подручных материалов и доступных деталей с минимумом затрат. Для вас мы предоставили одну подробную инструкцию с картинками, а также видео идеи еще нескольких вариантов сборки. Итак, давайте рассмотрим, как сделать ветрогенератор своими руками в домашних условиях.

Инструкция по сборке

Существуют несколько типов ветряных установок, а именно – горизонтальный, вертикальный и турбина. У них есть принципиальные различия, свои плюсы и минусы. Однако принцип работы всех ветрогенераторов одинаков - энергия ветра преобразуется в электрическую и накапливается в аккумуляторах, а уже с них уходит на нужды человека. Самый распространенный вид - это горизонтальный.

Он знаком и узнаваем. Преимущество горизонтального ветрогенератора - более высокий КПД по сравнению с другими, так как лопасти ветряка всегда находятся под действием воздушного потока. К недостаткам можно отнести высокое требование к ветру – он должен быть сильнее 5 метров в секунду. Этот тип ветряка сделать проще всего, поэтому его часто берут за основу домашние мастера.

Если вы решили попробовать свои силы в сборке ветрогенератора своими руками, вот несколько рекомендаций.

Начинать нужно с генератора - это сердце системы, от его параметров будет зависеть конструкция винтового узла. Для этого подойдут автомобильные генераторы отечественного и импортного производства, есть сведения о использовании шаговых двигателей от принтеров или прочей оргтехники. Велосипедное мотор-колесо также можно использовать, чтобы самому сделать ветряк для получения электричества. В целом, может подойти практический любой мотор или генератор, однако его обязательно необходимо проверить на эффективность.

Определившись с преобразователем энергии, нужно собрать редукторный узел для повышения оборотов на валу генератора. Один оборот пропеллера должен равняться 4-5 оборотам на валу генераторного узла. Однако эти параметры подбираются индивидуально, исходя из мощности и особенностей вашего генератора и лопастного узла. В качестве редуктора может выступать деталь от болгарки или система ремней и роликов.

Когда собран узел редуктор-генератор, приступают к выяснению его сопротивления крутящему моменту (грамм на миллиметр). Для этого нужно сделать плечо с противовесом на валу будущей установки, и с помощью груза выяснить при каком весе плечо пойдет вниз. Приемлемым результатом считается менее 200 грамм на метр. Размер плеча в этом случае принимается за длину лопасти.

Многие думают, что чем больше лопастей, тем лучше. Это не совсем верно. Нам нужны большие обороты, а много винтов создают большее сопротивление ветру, так как изготавливаем мы их в домашних условиях, в результате чего в какой-то момент набегающий поток тормозит винт и КПД установки падает. Вы можете использовать двухлопастной винт. Такой пропеллер при нормальном ветре может раскрутиться более 1000 оборотов в минуту. Сделать лопасти самодельного ветрогенератора можно из подручных средств - от фанеры и оцинковки, до пластика от водопроводных труб (как на фото ниже). Главное условие – материал должен быть легким и прочным.

Легкий винт повысит КПД ветряка и чувствительность к воздушному потоку. Не забудьте сбалансировать воздушное колесо и убрать неровности, иначе во время работы генератора будете слушать завывание и вой, а вибрации приведут к быстрому износу деталей.

Следующий важный элемент, это хвост. Он будет держать колесо в потоке ветра, и поворачивать конструкцию в случае изменения его направления.

Делать токосъемник или нет, решать вам. Это усложнит конструкцию, однако избавит от частых скручиваний провода, что чревато обрывами кабеля. Конечно, при его отсутствии вам придется иногда самостоятельно раскручивать провод. Во время пробного запуска ветрогенератора не забудьте о технике безопасности, крутящиеся лопасти представляют большую опасность.

Настроенный и сбалансированный ветряк устанавливают на мачту, высотой не ниже 7 метров от земли, закрепленную распорными тросами. Далее не менее важный узел — накопительный аккумулятор. Чаще всего используют автомобильный кислотный аккумулятор. Подключать выход самодельного ветрогенератора непосредственно к батарее нельзя, это нужно сделать через реле зарядки или контроллер, который можно собрать самому или же приобрести готовый.

Принцип работы реле сводится к контролю за зарядом и нагрузкой. В случае полного заряда батареи, оно переключает генератор и аккумулятор на нагрузочный балласт, система стремится всегда быть заряженной, не допуская перезаряда, и не оставляет генератор без нагрузки. Ветряк без нагрузки может достаточно сильно раскрутиться и повредить выработанным потенциалом изоляцию в обмотках. К тому же высокие обороты могут стать причиной механического разрушения элементов ветряного генератора. Далее стоит преобразователь напряжения с 12 на 220 вольт 50 Гц для подключения бытовых приборов.

Сейчас в интернете полно схем и чертежей, где мастера показывают, как сделать ветрогенератор на мощных магнитах самостоятельно. Настолько ли они эффективны, как обещают – вопрос спорный. Но попробовать собрать ветряную электрогенерирующую установку для дома стоит, а потом решить, как ее улучшить. Важно получить опыт и тогда уже можно замахнуться на более серьезный аппарат. Свобода и многообразие самодельных ветряков настолько обширна, а элементная база разнообразна, что нет смысла описывать их все, основной смысл остался тем же - поток ветра раскручивает винт, редуктор повышает обороты вала, генератор выдает напряжение, далее контроллер держит уровень заряда на аккумуляторе, а с него уже идет отбор энергии для различных нужд. Вот по такому принципу можно сделать ветрогенератор своими руками в домашних условиях. Надеемся, наша подробная инструкция с фото примерами разъяснила вам, как изготовить подходящую модель ветряка для дома или дачи. Также рекомендуем ознакомиться с мастер-классами по сборке самодельного устройства в видео формате.

Наглядные видеоуроки

Чтобы легко сделать ветрогенератор для получения электричества в домашних условиях, рекомендуем ознакомиться с готовыми идеями на видео примерах:

Вот мы и предоставили все наиболее простые и доступные идеи сборки самодельного ветряка. Как вы видите, некоторые модели устройств сможет легко изготовить даже ребенок. Существует множество других вариантов самоделок: на мощных магнитах, со сложными лопастями и т.д. Эти конструкции стоит повторять только при наличии некоторого опыта в этом деле, начинать следует с простых схем. Если вы хотите сделать ветрогенератор, чтобы он работал и использовался по назначению, действуйте согласно предоставленной нами инструкции. Если у вас остались вопросы – оставляйте их в комментариях.

ПВХ лопасти своими руками для ветровой турбины

Лопасти из ПВХ легкие, дешевые, быстрые и простые в изготовлении. Как вы их сделаете?

Энергия ветра, альтернативная энергия, ветрогенератор, ветряк своими руками, турбина

Выберите правильный размер.

Сначала вы должны решить для себя, какого размера лопасти нужны. Затем можете отправляться в магазин. Само собой разумеется, вы должны купить отрезок трубы такой же длины, какими будут лопасти. Диаметр трубы должен быть в 5 раз меньше длины лопасти. Например, для лопастей 50 см надо купить трубу диаметром 10 см. Из одного отрезка трубы можно сделать 4 лопасти.

Итак, вы принесли домой ПВХ трубу. В моем примере, для лопастей 50 см, она выглядит так.

Разметьте ПВХ трубу.

Первым делом надо разрезать трубу вдоль на четыре одинаковых секции. Размечать цилиндрическую поверхность трубы без каких-либо приспособлений сложно. Лучше всего взять большой лист бумаги и плотно обмотать его вокруг трубы. Край листа поможет провести прямую линию на трубе. Ширина листа будет равна длине окружности. Затем сложите лист бумаги пополам и отметьте половину окружности трубы. Наконец, сложите лист в четыре раза. Таким методом вы сможете аккуратно провести прямые линии по всей длине трубы. А теперь берите пилу, и разрезайте трубу на две половины.

(Альтернативная энергия,ветрогенератор,ПВХ лопасти своими руками, лопасти из ПВХ трубы,лопасти своими руками,Энергия ветра, ветряк своими руками)

А теперь каждую половину еще раз пополам:

Обработайте четыре заготовки.

Теперь, с каждой из четырех заготовок, мы должны проделать следующее:

1) Сделать прямоугольные вырезы длиной порядка 5 см у основания будущих лопастей. Прежде чем резать заготовки, надо просверлить в углах отверстия, чтобы не нарушать структурную целостность материала. Вырезы следует делать аккуратно, стараясь не задеть пилой просверленные отверстия.

2) Обрезать заготовки наискосок от конца к основанию.

Все готово.

Теперь все готово. У нас есть четыре лопасти.


Человек использует ветер уже несколько тысяч лет. Скорей всего, это началось с изобретения паруса. Несколько позже ветер стали использовать для привода ветряных мельниц, а с прошлого века - для выработки электричества. Получение энергии от ветросиловых установок является чрезвычайно заманчивой, но и весьма сложной технической задачей. В настоящее время имеется несколько вариантов технических конструкций ветрогенератора своими руками, хорошо зарекомендовавших себя на практике.

Ветер - поток воздушных масс над земной поверхностью. Он возникает из-за неравномерного нагрева этой поверхности солнечными лучами. Воздух из областей повышенного давления перемещается в направлении областей низкого давления. На скорость ветра влияют характер земной поверхности, протяжённость воздушного потока над этой поверхностью и различные природные и искусственные препятствия, такие как холмы, высокие деревья, здания. Среднегодовая скорость ветра для конкретной местности характеризует энергетический ветровой потенциал района. Эту скорость определяет среднеарифметическое значение скоростей за периоды, например, за месяц, сезон и год. Россия располагает значительными ветровыми ресурсами. Особенно они велики по всему морскому побережью и на территории юга нашей страны (рис. 1) . Регионы со среднегодовой скоростью ветра 3,5-6 м/с и выше считаются вполне перспективными для строительства ветроэлектрических установок (ВЭУ).


Если выяснится, что в месте предполагаемой установки ветрогенератора нет достаточно сильных ветров, то и не будет никакого смысла в её сооружении.

Второй вопрос - насколько мощным сделать ветрогенератор. Очевидно, что все энергетические проблемы исключительно с его помощью решить не удастся. Скорость ветра изменчива не только в зависимости от сезона, но и от времени суток, поэтому энергию необходимо запасать и бережно её расходовать. А лучше всего использовать различные источники совместно, например, ветряк и солнечные батареи (рис. 2) .


Правда, многие самодельщики готовы собирать ветровую установку своими руками даже только для того, чтобы заряжать аккумуляторы своего карманного гаджета. Это будет просто хобби. Но вот если вообще нет электроэнергии и перспективы её туда провести совершенно нереальны, то постройка ветрогенератора своими руками окажется полезной.

Расчет установки ветрогенератора

Простейшие расчёты помогут определить реальные возможности установки. Существует показатель, который позволит оценить, какую часть энергии воздушного потока можно использовать с помощью ветроколеса. Его называют коэффициентом использования энергии ветра (Е). Коэффициент использования энергии ветра Е зависит от типа ветродвигателя, качества его изготовления и других параметров. Лучшие быстроходные ветродвигатели с обтекаемыми аэродинамическими лопастями имеют значение Е = 0,43-0,47. Это означает, что ветроколесо такой ВЭУ может полезно использовать 43-47% энергии воздушного потока.

Максимальное теоретически вычисленное значение Е = 0,593, но на практике получить его невозможно.

Мощность ветроколеса на валу без учёта потерь в передачах и подшипниках можно подсчитать по формуле:

р - массовая плотность воздуха, равная при нормальных условиях 0,125 кг*с2/м4,
V - скорость ветра (м/с),
Р - ометаемая ветроколесом поверхность (м2),
Е - коэффициент использования энергии ветра.


Для нормальных условий (температура - 15°С и давление - 760 мм рт.ст.) мощность можно рассчитать по упрощённым формулам в лошадиных силах и в киловаттах:

D - диаметр ветроколеса (м).

Сделать ветряк малого диаметра, стабильно работающий при малых ветрах, - сложная задача. Воздушный винт получает 75% энергии с кольцевой области ометания от 0,5 до 1,0 радиуса. В связи с этим наименьший диаметр пропеллера, выгодного с точки зрения использования ветра со скоростью 4 м/с, должен быть не менее 4,5 м. Для малых ветров предпочтительнее оказываются тихоходные многолопастные винты.

Для ветроэлектростанции применяют генераторы переменного или постоянного тока. В самодельных ВЭУ очень часто используют генератор от современного автомобиля. Несмотря на то что они вырабатывают переменный ток, любой из них не очень подходит для этой цели, так как требует высоких оборотов и подмагничивания обмотки возбуждения. А генераторы постоянного тока вообще плохо работают при медленном вращении и даже на номинальных оборотах имеют небольшую мощность (100-200 Вт).

Самодельный ветрогенератор из асинхронного двигателя

Гораздо лучшие результаты можно получить с помощью переделанного асинхронного электродвигателя, снабдив его ротор постоянными магнитами. Эти двигатели не имеют никакой обмотки в роторе, а только металлические пластины. Если к ротору прикрепить постоянные магниты, то получится трёхфазный генератор удивительно прочной и долговечной конструкции, способный отдавать токи в десятки ампер при низких скоростях вращения.

Однако при высоких оборотах из-за большого тока начинают греться обмотки статора. В таком случае провод этих обмоток лучше заменить на другой - с большим сечением.

В трёхфазном генераторе переменного тока имеются 3 обмотки, соединить которые можно по схеме «треугольник» или «звезда». Треугольное соединение позволяет получить большой ток при меньшем напряжении, чем у соединения в звезду. Звезда наоборот даёт большее напряжение при меньшем токе. Трёхфазные генераторы намного эффективнее однофазных и генераторов постоянного тока. Это доказал ещё Никола Тесла.

Любой ветроагрегат требует защиты от шквальных порывов ветра. Вместо сложной системы поворота лопастей всё чаще используют механизм разворота всего колеса под углом к воздушному потоку.

Преобразование переменного тока в постоянный (который необходим для зарядки аккумуляторов) легко произвести с помощью полупроводниковых диодов, включённых по мостовой схеме (см. рис. 3) . Если же вам потребуется напряжение стандартной электросети 220 В частотой 50 Гц, то в качестве инвертора используйте обычный компьютерный блок бесперебойного питания. Новый блок стоит дорого, но поскольку нам потребуется лишь повышающий инвертор, то можно использовать и списанный. Достаточно к нему вместо внутреннего подсоединить аккумулятор ветряка. Мощности UPS 1000 или UPS 5000 будет более, чем достаточно.

Расчет лопастей ветрогенератора


Крепление лопастей к втулке позволяет перемещением их балансировать ветровое колесо в сборе.

Примером простейшей, но вполне работоспособной ВЭУ может служить конструкция французского умельца (фото 1) . Его шестилопастное ветряное колесо, лопасти которого хомутами прикреплены к металлическим пруткам (фото 2) , соединённым электросваркой с общей втулкой (рис. 4) , насаживается на ось электрогенератора.

Рис. 4. Втулка ветрового колеса.



Аэродинамический руль устанавливает колесо строго к ветровому потоку.

Для автоматической ориентации лопастей на ветер служит аэродинамический руль, прикреплённый к поворотной трубе силового узла установки (фото 3) . Подшипники поворотного устройства обеспечивают поворот ветроколеса с генератором на опорной мачте при изменении направления ветра.

Лопасти и аэродинамический руль выпилены из фанеры толщиной 10 мм. Консоль кронштейна крепления пера руля при порывистом ветре испытывает большие нагрузки, и потому её изготовили из заготовки толщиной в 15 мм. Готовые лопасти и руль мы видим на фото 4 . Выкройки этих деталей представлены на рис. 5-8 . Хотя лопасти и имеют плоский профиль, но их кромки должны быть обработаны в соответствии с рисунками.




Фото 6 .Доработка ротора асинхронного электромотора позволяет получить эффективный генератор переменного тока для ветроустановки.


Фото 7 . Переделать ротор можно двумя способами. Первый - это наклеить магниты на механически обработанный ротор двигателя. И второй способ - из стальной ленты по деревянной оправке сделать новый ротор, на который так же наклеить магниты.


Фото 8 Катушки полюсов статора лучше сразу перемотать проводом большего сечения.





Ветровое колесо имеет 6 лопастей. Однако всего их было изготовлено 9. Три коротких лопасти необходимы для замены трёх полноразмерных лопастей на время сезона сильных ветров (фото 5) . Балансировку ветрового колеса можно произвести перемещением лопастей по пруткам от втулки или ближе к ней.

Пожалуй, самой трудоёмкой будет переделка асинхронного электродвигателя в трёхфазный генератор. Двигатель мощностью 150 Вт и выше, рассчитанный на работу от сети 220 В при частоте 50-60 Гц, после переделки сможет в качестве генератора ветроустановки отдавать в нагрузку ток до десятка ампер при напряжении не ниже 12 В.

Главной переделке в будущем генераторе подвергается ротор. После разборки электромотора тело ротора протачивают и фрезеровкой пазов разделяют на несколько сегментов. В нашем случае их шесть. На каждом сегменте размещены постоянные магниты (см. рис. 9) . Их прикрепляют по 6 шт. на каждый полюс ротора (всего их 36) прочным эпоксидным клеем (фото 6) . Количество полюсов магнитов на роторе не должно быть кратным количеству катушек на статоре. Это исключит трудный пуск ветроколеса из-за «залипання» магнитов ротора на статорных полюсах.

Есть и второй способ переделки ротора - это сделать из стальной полосы нужного диаметра цилиндр (по деревянной оправке) и на него наклеить магниты (фото 7) .

Собирать обмотки полюсов статора при работе генератора на зарядку аккумулятора лучше в треугольник, а при прямой нагрузке большим током - в звезду. Катушки статора в любом случае лучше перемотать проводом большего сечения (фото 8) . Это уменьшит потери на нагрев.

Ветроэлектрические установки, работающие параллельно с другими установками, использующими возобновляемые источники энергии (солнечные батареи, гидрогенераторы, тепловые насосы и пр.), вполне могут обеспечить энергоснабжение жилого дома или небольшого хозяйства. При наличии резерва в виде электроагрегата с бензодвигателем временное снижение альтернативной энергии может быть компенсировано в любой момент. Подобные системы приносят большую экономию энергии, получаемой от традиционных источников.




Борис ГЕОРГИЕВ, Москва