Коллектор солнечный своими руками: виды, принцип работы и фото. Солнечный коллектор: устройство и принцип действия Распространенность солнечных коллекторов

22.03.2024

Различные солнечные коллекторы появились на рынке достаточно давно. Это устройства, использующие энергию солнца для нагрева воды на домашние нужды. Но приобрести популярность среди пользователей им мешает высокая стоимость, это беда всех альтернативных источников энергии. Например, общие затраты на приобретение и монтаж установки, что обеспечит нужды средней семьи, составят 5000$. Но выход есть: можно сделать солнечный коллектор своими руками из доступных по цене материалов. Какими способами это реализовать, будет рассказано в данном материале.

Как работает солнечный коллектор?

Принцип действия коллектора основан на поглощении (абсорбции) тепловой энергии солнца специальным приемным устройством и передачей его с минимальными потерями теплоносителю. В качестве приемника используются медные или стеклянные трубки, окрашенные в черный цвет.

Ведь известно, что лучше всего абсорбируют тепло предметы, имеющие темную или черную окраску. Теплоносителем чаще всего выступает вода, иногда – воздух. По конструкции солнечные коллекторы для отопления дома и горячего водоснабжения бывают таких видов:

  • воздушные;
  • водяные плоские;
  • водяные вакуумные.

Среди прочих воздушный солнечный коллектор отличается простотой конструкции и, соответственно, самой низкой ценой. Он представляет собой панель – приемник солнечной радиации из металла, заключенный в герметичный корпус. Стальной лист для лучшей теплоотдачи снабжен с задней стороны ребрами и уложен на дно с тепловой изоляцией. Спереди установлено прозрачное стекло, а по бокам корпуса имеются проемы с фланцами для подключения воздуховодов или других панелей, как показано на схеме:

Воздух, поступающий через проем с одной стороны, проходит между стальными ребрами и, получив от них тепло, выходит с другой.

Надо сказать, что установка солнечных коллекторов с нагревом воздуха имеет свои особенности. Из-за их невысокой эффективности для обогрева помещений нужно применять несколько подобных панелей, объединенных в батарею. Кроме того, обязательно понадобится вентилятор, поскольку нагретый воздух из коллекторов, находящихся на кровле, самостоятельно вниз не пойдет. Принципиальная схема воздушной системы показана ниже на рисунке:

Простое устройство и принцип работы позволяют выполнять изготовление коллекторов воздушного типа своими руками. Но потребуется много материала для нескольких коллекторов, а подогреть воду с их помощью все равно не получится. По этим причинам домашние умельцы предпочитают заниматься водяными нагревателями.

Конструкция плоского коллектора

Для самостоятельного изготовления наибольший интерес представляют плоские солнечные коллекторы, предназначенные для нагрева воды. В корпусе из металла или алюминиевого сплава прямоугольной формы размещен тепловой приемник - пластина с запрессованным в ней змеевиком из медной трубки. Приемник выполняется из алюминия или меди, покрытой абсорбционным слоем черного цвета. Как и в предыдущем варианте, снизу пластина отделена от дна слоем теплоизоляционного материала, а роль крышки играет прочное стекло или поликарбонат. Ниже на рисунке изображено устройство солнечного коллектора:

Пластина черного цвета поглощает тепло и передает его теплоносителю, движущемуся по трубкам (вода или антифриз). Стекло выполняет 2 функции: пропускает к теплообменнику солнечную радиацию и служит защитой от осадков и ветра, снижающих производительность нагревателя. Все соединения выполнены герметично, чтобы внутрь не попадала пыль и стекло не теряло прозрачности. Опять же, тепло солнечных лучей не должно выветриваться наружным воздухом через щели, от этого зависит эффективная работа солнечного коллектора.

Данный вид – самый популярный среди покупателей из-за оптимального соотношения цена - качество, а среди домашних мастеров - по причине относительно несложной конструкции. Но применять такой коллектор для отопления можно лишь в южных регионах, с понижением температуры наружного воздуха его производительность значительно падает из-за высоких тепловых потерь через корпус.

Устройство вакуумного коллектора

Еще один вид водяных солнечных нагревателей изготавливается с применением современных технологий и передовых технических решений, а потому относится к высокой ценовой категории. Таких решений в коллекторе реализовано два:

  • тепловая изоляция с помощью вакуума;
  • использование энергии парообразования и конденсации вещества, кипящего при низкой температуре.

Идеальный вариант защитить абсорбер для коллектора от тепловых потерь – это заключить его в вакуум. Медная трубка, наполненная хладагентом и покрытая абсорбирующим слоем, помещена внутрь колбы из прочного стекла, воздух из пространства между ними откачан. Концы медной трубки входят в трубу, через которую протекает теплоноситель. Что происходит: хладагент под воздействием солнечных лучей закипает и обращается в пар, он поднимается по трубке вверх и от соприкосновения с теплоносителем сквозь тонкую стенку снова переходит в жидкость. Ниже показана рабочая схема коллектора:

Фокус в том, что в процессе превращения в пар вещество поглощает гораздо больше тепловой энергии, чем при обычном нагреве. Удельная теплота парообразования любой жидкости выше, нежели ее удельная теплоемкость, а потому вакуумные солнечные коллекторы весьма эффективны. Конденсируясь в трубе с проточным теплоносителем, хладагент передает ему всю теплоту, а сам стекает вниз за новой порцией энергии солнца.

Благодаря своему устройству вакуумные нагреватели не боятся низких температур и сохраняют свою работоспособность даже на морозе, а потому могут применяться в северных регионах. Интенсивность нагрева воды в этом случае ниже, чем летом, так как зимой на землю поступает меньше тепла от солнца, часто мешает облачность. Понятно, что изготовить стеклянную колбу с откачанным воздухом в домашних условиях просто нереально.

Примечание. Существуют вакуумные трубки для коллектора, заполняемые напрямую теплоносителем. Их недостаток – последовательное подключение, при выходе из строя одной колбы придется менять весь водонагреватель.

Как изготовить солнечный коллектор?

Прежде чем приступить к работе, следует определиться с габаритами будущего водогрейного аппарата. Произвести точный расчет площади теплообмена непросто, многое зависит от интенсивности солнечного излучения в данном регионе, расположения дома, материала нагревательного контура и так далее. Правильным будет сказать, что чем больше тепловой коллектор, тем лучше. Однако, его размеры наверняка ограничиваются местом, где планируется его устанавливать. Значит, надо исходить из площади этого места.

Корпус проще всего изготовить из древесины, проложив на дно слой пенопласта или минеральной ваты. Также для этой цели удобно использовать створки старых деревянных окон, где сохранилось хотя бы одно стекло. Выбор материала для приемника тепла неожиданно широк, чего только не используют мастера-умельцы, чтобы собрать коллектор. Вот перечень популярных вариантов:

  • тонкостенные медные трубки;
  • различные полимерные трубы с тонкими стенками, желательно черного цвета. Хорошо подойдет полиэтиленовая РЕХ труба для водопровода;
  • трубки из алюминия. Правда, соединять их сложнее, чем медные;
  • стальные панельные радиаторы;
  • черный садовый шланг.

Примечание. Кроме перечисленных, существует масса экзотических версий. Например,воздушный солнечный коллектор из пивных банок или пластиковых бутылок. Подобные прототипы отличаются оригинальностью, но требуют значительного вложения труда при сомнительной отдаче.

В собранный деревянный корпус или старую оконную створку с приделанным дном и уложенным утеплителем надо поместить металлический лист, накрывающий всю площадь будущего нагревателя. Хорошо, если найдется лист алюминия, но подойдет и тонкая сталь. Ее необходимо окрасить в черный цвет, а затем уложить трубы в виде змеевика.

Без сомнения, коллектор для нагрева воды лучше всего получится из медных труб, они отлично передают тепло и прослужат долгие годы.Змеевик плотно прикрепляется к металлическому экрану скобами или любым другим доступным способом, наружу выводятся 2 штуцера для подачи воды.

Поскольку это плоский, а не вакуумный коллектор, то поглотитель тепла нужно закрыть сверху светопрозрачной конструкцией – стеклом или поликарбонатом. Последний легче обрабатывается и надежнее в эксплуатации, не разобьется от ударов града.

После сборки солнечный коллектор надо установить на место и подключить к накопительному баку для воды. Когда позволяют условия монтажа, то можно организовать естественную циркуляцию воды между баком и нагревателем, в противном случае в систему включается циркуляционный насос.

Заключение

Осуществлять отопление дома солнечными коллекторами, сделанными своими руками, – привлекательная перспектива для многих домовладельцев. Жителям южных районов этот вариант более доступен, только придется заполнить систему антифризом и как следует утеплить корпус. На севере самодельный коллектор поможет нагреть воду на хозяйственные нужды, но для обогрева дома его не хватит. Сказывается холод и короткий световой день.

Солнечный коллектор – это особое устройство, предназначенное для превращения энергии солнца в тепло. В отличие от солнечных батарей, работающих на принципе фотоэффекта и вырабатывающих ток, коллекторы предназначены для нагрева жидкости-теплоносителя. Поэтому их широко применяют в системах ГВС и отопительных коммуникациях частных домов. Существует две разновидности данных агрегатов, таким образом, устройство солнечного коллектора и особенности работы напрямую зависят от его типа.

Принцип работы же всех коллекторов, по сути, одинаков. Солнечные лучи падают на внешнюю поверхность коллектора, нагревая находящийся в нем теплоноситель. Разогретый теплоноситель по тонким трубкам поступает в накопительный бак, заполненный водой. Причем трубки для теплоносителя проходят через весь объем бака, за счет чего обеспечивается равномерный прогрев жидкости. По мере протекания через бак теплоноситель остывает и подается обратно в коллектор уже в холодном состоянии, где вновь нагревается. Таким образом гарантируется постоянная циркуляция горячего теплоносителя через накопительный бак с водой. Вода из бака может использоваться для купания, мытья посуды и прочих бытовых нужд или же подаваться в отопительные радиторы.

Плоские коллекторы

Основной элемент такого коллектора – плоский абсорбер (теплопоглотитель) со змеевидной трубкой для теплоносителя. Абсорбер имеет вид металлической пластины, верхняя часть которой обязательно выкрашена в черный цвет (для максимально полного поглощения солнечных лучей). К нижней плоскости пластины приварена тонкая металлическая трубка, изогнутая в виде змеевика. Именно по этой трубке и циркулирует теплоноситель (обычно это вода, реже – антифриз). Сварочные швы проходят по всей длине змеевика для обеспечения полного теплового контакта.

Такой абсорбер помещается в корпус, изготовленный из тонких алюминиевых профилей. Верхняя часть корпуса закрывается особо прочным закаленным стеклом с максимальной светопроницаемостью (иногда для этих целей используется сотовый поликарбонат). Обязательное условие – наличие надежной теплоизоляции между абсорбером и стенками корпуса. Это необходимо для предотвращения теплопотерь в окружающую среду.

Вакуумные коллекторы

Отличие вакуумного солнечного коллектора от плоского только одно, но принципиальное. Это отличие – устройство абсорбера. В вакуумных моделях он представляет собой системы вакуумированных трубок из особого стекла. Внутри каждой трубки находится медный стержень с теплопередающей жидкостью.

Причем трубки такого солнечного коллектора различаются по конструктивным особенностям:

  • Коаксиальные. Больше всего они напоминают классические термосы. Стеклянные колбы с двойными стенками (между ними – вакуум), внутри которых запаяна трубка из меди с легко вскипающей жидкостью. Теплопередача идет непосредственно от самой колбы, ее стенки имеют теплопоглощающее покрытие. При нагревании жидкость испаряется, передавая тепло далее в систему. Затем пар в виде конднесата оседает на дно трубки, после чего циклический процесс возобновляется.
  • Перьевые. Это колбы с одной, но толстой и прочной стенкой. Внутри - теплопоглощающая трубка (также из меди), снабженная гофропластиной с абсорбционным слоем. За счет такого устройства вакуум формируется в тепловом канале, причем сам канал (равно как и абсорбер) частично интегрирован в колбу.

Очевидно, что у вакуумного вида солнечного коллектора гораздо более сложное устройство, чем у плоского аналога. Более того, помимо разных типов стеклянных трубок для них используют и разные теплоканалы (трубки из меди, в которых проходит теплоноситель).

Так, теплоканалы вида «heat pipe» («горячая труба») представляют собой герметичные трубки с легко вскипающей жидкостью. При нагревании она испаряется, движется вверх канала и отдает там набранную тепловую энергию, конденсируясь в особом теплосборном узле. Остыв, жидкость стекает в нижнюю часть канала, повторяя цикл. А теплоноситель самого солнечного коллектора забирает отданное тепло, передавая его дальше в систему.

Очень востребованы и прямоточные каналы. Во внутренней части колбы располагаются две объединенные трубки из меди. Одна из них служит для подачи жидкости в колбу, другая – для выхода жидкости. В процессе прохода через колбу жидкость нагревается.

Виды теплоканалов и трубок могут комбинироваться между собой в различных вариациях. Причем каждое такое сочетание трубки/канала обладает своими эксплуатационными особенностями, достоинствами и недостатками.

Видео про солнечные коллекторы:

Воздушные коллекторы

Воздушные варианты солнечного коллектора известны гораздо меньше, чем вакуумные или плоские модели. Тем не менее, они достаточно неплохо зарекомендовали себя в осушительных установках, в комплексах воздушного отопления и в системах рекуперации воздуха. Схема работы и устройство такого коллектора очень просты.

Теплоносителем, как ясно из названия, является не жидкость, а обычный воздух. Конструктивно воздушный коллектор представляет собой плоскую панель с ребристой (иногда – дополнительно перфорированной) поверхностью или же систему трубок из металла хорошей теплопроводности. Воздух в коллекторе нагревается благодаря непосредственному контакту с металлом (который прогревается под солнечными лучами). С помещением коллектор соединяется через воздуховоды (один – для забора воздуха, второй – для подачи), в которых установлены вентиляторы для обеспечения циркуляции воздушных масс.

Принцип работы солнечных коллекторов основан на трансформации лучистой энергии солнца в тепловую энергию. Происходит это путем нагревания циркулирующего в коллекторе теплоносителя (чаще всего воды, иногда – антифриза) и последующей передачи накопленного тепла. Иными словами, солнечный коллектор работает как своего рода водонагреватель, что и определило его сферу применения (ГВС частных домов, отопление).

Общий принцип водонагрева

Существуют различные виды гелиоколлекторов, однако в водонагревательных установках все они работают по одной схеме. Солнечные лучи нагревают теплоноситель, который по тонким трубкам поступает в заполненный водой бак. Трубки с теплоносителем проходят через весь внутренний объем бака и нагревают находящуюся в нем воду. В дальнейшем эта вода расходуется на бытовые нужды (отопление, ГВС и т.д.). Температура воды в баке контролируется специальными датчиками, при ее охлаждении ниже заданного минимума автоматически включается резервный подогрев (обычно – газовый или электрокотел).

Такова общая схема работы всех солнечных водонагревательных установок. Что же касается работы плоских и вакуумных коллекторов, то, несмотря на единый принцип действия (нагрев теплоносителя от солнца и последующую отдачу тепла), в их работе много различий.

Плоские коллекторы

Плоский солнечный коллектор нагревает теплоноситель при помощи пластинчатого абсорбера. Устроен он довольно просто. По сути, это пластина теплоемкого металла, выкрашенная сверху в черный цвет специальной краской. К нижней поверхности пластины плотно прилегает (приваривается) змеевидная трубка, по которой и циркулирует жидкость.

Черная селективная краска обеспечивает максимальное поглощение солнечных лучей, причем их отражение практически равно нулю. Поглощенные лучи прогревают теплоноситель под абсорбером, он, в свою очередь, подается далее в систему. Для минимизации теплопотерь применяются теплоизоляция абсорбера от корпуса коллектора и закаленное стекло, почти не содержащее окислов железа. Оно устанавливается над абсорбером и выполняет функцию верхней крышки корпуса. Кроме того, использование подобного стекла позволяет создать своеобразный «эффект парника», что еще больше увеличивает прогрев абсорбера, а значит, и температуру теплоносителя.

Вакуумные коллекторы

Принцип работы вакуумных коллекторов иной. Объясняется это прежде всего разницей в конструкции. Главным рабочим элементом в вакуумных моделях является не пластина абсорбера, а система вакуумированных трубок и теплосборник. Причем вариантов конструкций таких трубок несколько.

Тем не менее, несмотря на конструктивные различия, общая схема действия таких трубок фактически одинакова. Стеклянная поверхность поглощает максимум солнечных лучей благодаря специальному высокоселективному покрытию. Энергия солнца нагревает внутренний теплоноситель, а вакуумная прослойка ликвидирует теплопотери, так как вакуум – лучший изолятор. Через теплосборник аккумулированное тепло поступает далее в систему и используется для нагрева воды в баке-накопителе.

В целом коллектор этого типа обеспечивает более высокую производительность по сравнению с плоским аналогом.

Вакуумные трубки

Устройство классической вакуумированной трубки довольно просто. Она представляет собой двухстенную стеклянную колбу, между стенками которой создан вакуум. Внутри расположен медный сердечник (тепловой канал). Такая трубка называется «коаксиальной». Еще один вид - так называемые «перьевые трубки», одностенные колбы с вакуумом в самом тепловом канале.

Принцип работы вакуумной трубки зависит от особенностей строения ее теплового канала и от типа самой колбы. Каналы же, как и колбы, бывают двух видов, прямоточные и типа heat pipe.

Действие прямоточных каналов основано на непосредственном протекании теплоносителя через U-образную медную трубку. Охлажденная жидкость попадает в трубку из теплосборника, проходит через нее, нагревается и возвращается в теплосборник. Там она отдает накопленное тепло основному теплоносителю и возвращается в трубку.

Трубка heat pipe работает несколько иначе. Принцип ее работы основан на переносе тепла посредством легко испаряющейся жидкости, заключенной в тепловом канале. Сам канал (трубка) выполняется из теплоемкого металла (алюминий, медь). Солнечный свет нагревает жидкость, она испаряется из нижнего конца трубки и конденсируется в теплосборнике. Конденсат стекает вниз, где его вновь разогревает солнечный свет. Основной теплоноситель забирает тепло из теплосборника и передает его через коллектор дальше в систему.

Теплосборник

Помимо трубок, вакуумный солнечный коллектор оснащен теплосборником, которые необходим для передачи тепла от трубок к теплоносителю. Размещается теплосборник в верхней части агрегата. Принцип его работы следующий. Медный сердечник передает накопленную энергию основному теплоносителю, циркулирующему в замкнутом круге «теплообменник бака – коллектор». Циркуляцию обеспечивает специальный небольшой насос. Причем если температура теплоносителя упадет ниже определенного минимума (например, ночью), то управляющая автоматика водонагревательной системы отключит насос. Таким образом предотвращается обратный прогрев, при котором теплоноситель будет забирать тепло горячей воды в накопительном баке.

Воздушные коллекторы

Солнечный коллектор воздушного типа гораздо менее распространен. Применяется он не для подогрева воды, а для нагрева и кондиционирования воздуха. Роль теплоносителя в нем играет собственно воздух, нагреваемый солнечными лучами. По сути, данный коллектор представляет собой ребристую металлическую панель, выкрашенную в черный цвет. Принцип работы его основан на естественной или принудительной подаче в помещения воздуха, который прогревается под панелью под действием солнечных лучей.

Принцип работы солнечного коллектора, виды, особенности

Наша звезда по имени Солнце каждый даёт нам бесплатно неограниченное количество энергии. Причём эта энергия практически неисчерпаема. Поэтому всё больше разработок мы видим в области солнечной энергетики. В развитых странах постоянно работают над тем, как поднять эффективность устройств, преобразующих солнечный свет в энергию. Это может быть электрическая энергия или тепловая. О сборе тепловой энергии мы сегодня и будем говорить. Ведь сколько тепла на халяву можно собрать из солнечного света в летнее время. А при наличии соответствующего оборудования, и в зимний период также. В ясную погоду Солнце «одаривает» каждый квадратный метр энергией 500─800 ватт/час. То есть, солнечный коллектор компактных размеров вполне может обеспечить отопление частного дома или его горячее водоснабжение. Солнечный коллектор представляет собой систему сбора солнечного тепла, в которой теплоносителем может быть воздух, вода, антифриз и т. п. В этой статье мы рассмотрим эти виды, поговорим об их эффективность и принцип работы.

Как могут использоваться тепловые коллекторы в хозяйственной деятельности? Собранное ими тепло можно пустить на:

  • Горячее водоснабжение ванной комнаты, душа, кухни;
  • Система обогрева сада, теплицы и других подобных конструкций практически круглый год;
  • Вспомогательный источник нагрева воды для отопительной системы осень и зимой.
Если вы ни разу не имели дело с солнечными коллекторами, то внимательно отнеситесь к их выбору. К примеру, жидкостные плоские и вакуумные модели достаточно сильно отличаются друг от друга по цене и эффективности работы. Вакуумные, к примеру, делаются только фабрично, а плоские часто изготавливаются кустарным способом. Перед покупкой обязательно прочитайте отзывы о разных типах коллекторных установок. Вам станет понятно, какие результаты и сложности могут подстерегать вас в этом направлении.

Коллекторных установок по сбору солнечного тепла много. Попробуем выделить основные группы.

  • Плоские или вакуумные системы. Могут иметь естественную, но чаще всего принудительную циркуляцию теплоносителя. Обычно это стационарные установки, некоторые из которых работают в летний сезон, а другие круглый год;
  • Воздушные коллекторы. Тепло собирается с абсорбера при помощи воздушного потока. Циркуляция также может быть естественной или принудительной. Этот тип установок проще и дешевле остальных, но имеют самый низкий КПД;
  • Третья группа систем может использовать тепло для преобразования его в электричество (пароэлектрические и термохолодильные установки). Цена на эти устройства большая и они мало распространены в частном секторе.

Принцип работы солнечных коллекторов

Принцип работы солнечного коллектора заключается в сборе тепла и передаче его теплоносителю, циркулирующему в нём. Коллектор является ключевым элементом гелиосистем. Так сказать, их сердцем. Но помимо него туда входит ещё немало компонентов, о которых будет сказано ниже. Самый распространённый вариант коллектора – это плоский. Он имеет в своём составе абсорбер, поглощающий солнечное излучение и преобразующий его в тепло. Чтобы минимизировать потери тепла, абсорбер расположен в ящик с прозрачной передней стенкой и теплоизоляцией.

Через абсорбер прогоняется или идёт самотёком теплоноситель. В этой роли используют воду, антифриз или их смесь. Циркуляция поддерживается между коллектором и накопительной ёмкостью с горячей водой. Гелиосистема управляется посредством специального регулятора. Это своеобразный контроллер солнечного коллектора. Этот регулятор отслеживает, когда жидкость в резервуаре доходит до заданной температуры. После этого включается насос и начинается циркуляция теплоносителя. В большинстве случаев абсорберы делают из змеевика и массивного металлического листа. Как правило, для этого используют медь и алюминий.

Теплоноситель проходит по змеевику и идёт процесс теплообмена. Есть исполнения в виде двух сваренных листов металла, между которыми проходит жидкость-теплоноситель. Для изготовления коллекторов, нагревающих воду для бассейна, часто используют пластиковые трубы в качестве змеевика. Соответственно, и нагрев теплоносителя здесь происходит значительно меньше.

Теперь стоит поговорить о том, что включают в себя подобные гелиосистемы. В состав коллекторной установки входят следующие компоненты:

  • Коллектор;
  • Расширительный бак;
  • Температурные датчики (в коллекторе, накопителе, для подогрева воды и т. п.);
  • Система подключения для подключения холодному водоснабжению;
  • Регулятор;
  • Система стока горячей воды;
  • Насос.


Используя стандартные решения для отопления дома, можно постоянно получать в своё распоряжение необходимый объём горячей воды. Если используется солнечный коллектор, то в какой-то момент его мощности хватает для нагрева необходимого количества воды, а в следующий момент он простаивает или его выработка значительно снижена.

Поэтому чаще всего солнечные коллекторы, как правило, интегрируются в систему отопления с котлами на традиционных источниках энергии. С их интеграцией проблем не возникает, поскольку коллекторные системы могут быть легко установлены на здании. Пока ещё гелиотехнологии недостаточно развиты для того, чтобы эффективно работать без обычных электрических или газовых котлов.

Виды

Давайте рассмотрим основные конструкции солнечных коллекторов.

Воздушные

Как понятно из названия, теплоносителем в таких коллекторах является воздух. Такие конструкции очень просты, надёжны и обходятся недорого. Очень часто их делают своими руками без особых проблем. Абсорбер в таких коллекторах представляет собой батарею вертикальных трубок (каналов), которые выкрашены в чёрный матовый цвет. В основе функционирования такой системы лежит прогон воздуха по этим трубам для его нагрева.

Среди плюсов воздушного коллектора можно отметить:

  • Простота и высокая надёжность;
  • Простой монтаж, дешевизна;
  • Расход электричества минимален (на вентилятор) или его нет (когда воздух идёт самотёком).

Конструкция этой системы обычно делается из алюминиевых трубок с тонкой стенкой. Часто в сети можно встретить примеры, где работает солнечный коллектор из пивных банок. При этом поверхность этих банок окрашена в чёрный матовый цвет. В этой батарее есть воздуховоды для подачи холодного и отвода нагретого воздуха. В холодном подводе ставится вентилятор с, так называемым, нулевым сопротивлением. При необходимости он отключается, и воздух идёт самотёком. А этот вентилятор должен создавать для него как можно меньшее сопротивление. Воздухозаборник позволяет изменять количество воздуха, который забирается из помещения, а также извне.

По производительности и эффективности воздушные коллекторы несколько уступают плоским жидкостным установкам. Они могут хорошо нагреть помещение, только при максимальной освещённости солнечным светом. Мощность таких систем регулируется в зависимости от числа труб в абсорбере. Очень часто подобные установки применяют в системах отопления и сушки хозяйственных, складских помещений, хранятся овощи и фрукты.

Жидкостные

В этой группе рассмотрим коллекторные системы с жидким теплоносителем.

Плоские

Плоский солнечный коллектор имеет в своём составе абсорбер, корпус и теплоизоляцией и прозрачным покрытием с одной стороны. В роли прозрачного покрытия может использоваться стекло, поликарбонат. В самодельных установках иногда можно встретить прозрачный пластик или полиэтилен. Лучше всего использовать стекло, которое хорошо пропускает коротковолновые солнечные лучи. Кроме того, у обычного прозрачного стекла без напыления небольшое отражение лучей от поверхности.



Помимо пропускания света, прозрачное стекло или другой материал должны защищать абсорбер от воздействия окружающей среды. При фабричном производстве корпусов используется алюминий или оцинкованная сталь. В последнее время встречаются установки, в которых корпус выполнен из синтетических материалов.

Теплоизоляция корпуса делается внутри с оборотной стороны и по бокам. Это позволяет значительно понизить потери тепла. В качестве изоляционного материала может быть использован полиуретан или минеральная вата. А также часто используют стекловолокно, стеклопластик, стекловату прочие подобные материалы.

Плоские коллекторные установки привлекают отличным соотношением цены и производительности. Стоит также отметить различные способы их монтажа. Они ставятся на крыше, на стене здания. Могут быть и отдельно стоящие установки. Чтобы снизить потери от конвекции в корпусе коллектора, производители использует разные методы. Один из таких методов предполагает откачку воздуха в помещение.

Вакуумные

Плоские коллекторы выгодны по цене, привлекают простотой и надёжностью, но эффективно работают только в солнечный день. Кроме того, они становятся бесполезными зимой. Даже осенью и весной эффективность таких систем сильно падает. Если вы хотите использовать коллектор в северных широтах в любое время года, придётся покупать вакуумный аппарат.

Вакуумные коллекторы (часто их ещё называют трубчатыми) обладают высокой эффективностью. Сердцем системы являются вакуумные трубки. Принцип действия – это известная из физики тепловая трубка. Такая конструкция обладает высокой теплопроводностью. Тепло на одном конце трубки собирается и передаётся на противоположный конец.



Один элемент такого коллектора является своеобразной колбой из стекла высокой прочности. Внутри оно имеет зеркальное напыление. Поскольку зеркало одностороннее, то лучи солнца попадают внутрь колбы и не выходят обратно. В результате медная тепловая трубка поглощает максимальное количество солнечной энергии. А чтобы тепло не терялось в окружающую среду, трубка помещена в другую трубку, а между ними создан вакуум. Тепловую энергия, получаемую от солнца, медная трубка передаёт теплоносителю (тосол, масло) внутри себя самой. Он, в свою очередь, передаёт тепло воде во внешнем контуре. Это называется схема косвенного нагрева. И также тепло трубка может отдавать напрямую воде, циркулирующей в системе. Это схема прямого нагрева.

В чём заключаются плюсы вакуумных коллекторов?

  • В три─четыре раза более эффективны, чем плоские модели;
  • Работают даже в зимнее время года;
  • Имеют небольшую чувствительность к углу падения света от солнца. Даже при острых углах падения эти системы функционируют нормально;
  • Конструкция весит немного и может быть установлена прямо на крыше дома без создания несущих конструкций.

Стоит отметить, что запас прочности стекла позволяет выдержать удары градин до 2 сантиметров в диаметре. Кроме того, оно выдерживает многократные циклы нагрев-охлаждение. Периодически нужно очищать поверхность трубок. Это делается мойкой тёплой водой, лучше в вечернее время. Многие спрашивают, а как рассчитать площадь солнечного коллектора для нагрева определённого объёма воды. Можно сказать, что коллектор площадью один квадратный метр даёт в сутки около 60 литров воды температурой 60─70 градусов.

Хотя эти данные могут значительно отличаться для продукции различных производителей. Полезным можно назвать такую возможность, как самостоятельную проверку вакуумных трубок. Их работоспособность можно оценить без специального инструмента. Для этого к нижнему торцу трубки неработающей системы нужно приложить ладонь. Трубка считается нормальной, если место прикосновения долго остаётся холодным и не появляется никакого налёта в области прикосновения.


Вода из накопительной ёмкости может подаваться, как самотёком, так и с помощью насоса небольшой мощности. С последним резервуар заполняется значительно быстрее. Есть довольно сложные конструкции, где солнечный коллектор соединяется тепловым накопителем, системой отопления, горячего водоснабжения и электроникой для управления. Стоимость подобных систем может доходить до нескольких тысяч евро. Производители заявляют, что срок службы устройств составляет до 25─30 лет.

Про солнечные коллекторы в наше время, слышали, почти все. В общих чертах, почти все понимают, что это устройство, которое помогает преобразовать энергию солнца в тепло. Однако, на самом деле, практически, практически, никто не знает, «что это такое и как оно работает».

Национальная энциклопедия строительства ProfiDom.com.ua публикует краткий курс – «ликбез» по основам теории солнечных коллекторов.

Принцип работы солнечных коллекторов уникален. Если в котлах нагрев жидкости происходит за счёт энергии, высвобождающейся при сгорании топлива, а в тепловых насосах - тепла почвы, воздуха или воды, то гелиоколлекторы получают его напрямую от главного источника тепла в Солнечной системе - Солнца.
Источник этот - неиссякаемый, экологичный, доступный всем на Земле и, что немаловажно, бесплатный. Правда, чтобы эффективно использовать его в бытовых целях для нагрева воды или теплоносителя, понадобится вложиться не только в сами солнечные коллекторы, но и в разнообразное оборудование, обслуживающее их. При этом. необходимо заранее учесть ряд специфических нюансов работы гелиоколлекторов и предусмотреть варианты защиты от некоторых из них.

Характерная черта солнечных коллекторов, отличающая их от других видов теплогенераторов, - их сезонность. Коллектор получает тепловую энергию из солнечных лучей, соответственно, нет солнца - нет тепла. Гелиоколлекторы вносят свой вклад в систему теплоснабжения только в светлое время суток, то есть днём, ночью же они пассивны. Продолжительность светового дня тоже играет роль: чем он короче, тем меньше коллектор получит энергии за сутки. Поэтому, один и тот же гелиоколлектор в разное время года будет получать разное количество тепла. Изменение производительности коллектора в зависимости от сезона - один из важнейших факторов, который необходимо учитывать при расчётах.

Пик эффективности солнечных коллекторов совпадает с пиком инсоляции. Больше всего тепла коллекторы приносят в период с мая по август. В межсезонье продуктивность коллекторов падает и достигает минимума к декабрю-январю. Однако, у приборов разных типов это снижение эффективности неодинаково. Дело в том, что производительность коллектора зависит от двух параметров - сколько энергии он получит от солнца и сколько тепла при этом потеряет из-за несовершенства конструкции. Поэтому производители принимают меры по повышению теплопоглощения - с одной стороны, и по снижению теплопотерь - с другой.

Разные конструкции - разный КПД
На рынке наиболее распространены гелиоколлекторы двух основных конструкций - плоские и вакуумные трубчатые, последние, также, принято подразделять на прямопроточные и с эффектом «тепловой трубки». Эти различия вызваны как раз поиском решений проблем получения и сохранения тепла солнечного излучения. Проблемы эти кроются в самом принципе работы коллекторов.

Как известно, солнечные лучи нагревают объекты неодинаково, и во многом, это зависит от поверхности. Одни покрытия отражают большую часть светового потока, другие, напротив, поглощают. Максимальным коэффициентом поглощения светового излучения обладают поверхности с чёрным покрытием, что и используется в гелиоколлекторах.

Основный рабочий элемент в их конструкции - абсорбер (поглотитель), представляющий собой обычно медную пластину с приваренной трубкой. Поверхность абсорбера, обращённая к солнцу, имеет специальное чёрное покрытие, чтобы лучи могли передать ей как можно больше тепловой энергии.

Пластина, а с ней и трубка быстро нагреваются, а циркулирующая по трубке жидкость забирает это тепло и транспортирует далее в систему. Но горячая пластина абсорбера начинает сама излучать тепло в окружающую среду и нагревать контактирующий с ней воздух. Чтобы этого не происходило, абсорбер изолируют от открытой атмосферы. Меры, увеличивающие количество получаемого от солнца тепла, обычно касаются стекла и абсорбера. У обычных стёкол есть ряд недостатков - они могут бликовать (то есть отражать часть солнечного света вместо того, чтобы пропускать его внутрь), к тому же часть лучей не попадает внутрь из-за их недостаточной прозрачности.

Поэтому, в высокотехнологичных гелиоколлекторах применяются специально разработанные стёкла с пониженным содержанием железа, отличающиеся большей прозрачностью, по сравнению с обычными. Они пропускают больше света, а значит, коллектор получит дополнительную тепловую энергию. Помимо этого, стекло часто снабжают антибликовым покрытием - оно уменьшает долю отражённого поверхностью света и тоже способствует увеличению производительности коллектора. Важна также и чистота - запылённое или запотевшее стекло, очевидно, пропускает меньше света. Чтобы внутрь коллектора не забивалась пыль и не попадала влага, его корпус нередко делают герметичным и даже заполняют инертным газом. Правда, эти меры нужны только для плоских коллекторов - у вакуумных моделей, о которых речь пойдёт ниже, таких проблем нет.

Что касается абсорбера, то здесь все технологии направлены на повышение его поглощающей способности. В дешёвых гелиоколлекторах пластину абсорбера нередко просто красят чёрной краской. Эффект от такого решения, конечно, есть, но незначительный, к тому же, краска может бликовать, а качество покрытия со временем ухудшается. Более дорогие технологичные модели коллекторов снабжены абсорберами с особым высокоселективным покрытием, которое не бликует, служит долго и очень хорошо поглощает солнечное излучение.

Но основные различия в конструкциях солнечных коллекторов заключаются в способах теплоизоляции. Плоский коллектор представляет собой прямоугольный металлический короб, закрытый сверху стеклом. Стенки и дно короба теплоизолированы - обычно минеральной ватой. Однако, такая изоляция несовершенна, потому что не исключает переноса тепла от абсорбера к стеклу посредством содержащегося внутри коллектора газа, да и минеральная вата тоже не исключает полностью теплопотери через корпус.

Поэтому, в вопросе сохранения тепла плоским коллектором важное значение имеет разница температур внутри коллектора и снаружи. Летом, когда воздух на улице хорошо прогрет, потери тепла малы, и коллектор почти всю энергию, полученную от солнца, направляет в систему. Но стоит уличной температуре снизиться, - и коллектор, который в межсезонье и зимой и так получает меньше тепла, начинает всё больше терять собранной энергии.

В результате, плоские коллекторы очень эффективны в конце весны и летом, но в холодную погоду собирают крайне мало тепла. Вакуумные трубчатые коллекторы обладают более совершенной теплоизоляцией. У них абсорберы расположены внутри стеклянных трубок, между стенками которых - вакуум. Перенос тепла газовой средой в таком коллекторе невозможен, ввиду отсутствия самого газа, как такового. Поэтому, теплопотери вакуумных коллекторов минимальны даже при сильных морозах.