Стабилизированный преобразователь напряжения на микросхеме YX8018. Повышающий преобразователь с MPPT контролером заряда для солнечных батарей Сетевой тип преобразователя

06.12.2023

Устройство представляет собой простой повышающий преобразователь и ограничитель напряжения, который заряжает аккумуляторы напряжением 12В от солнечной панели напряжением 6В. Устройство также имеет функцию MPPT (Отслеживание точки максимальной мощности). Когда мы думаем о MPPT, то обычно вспоминаем про микроконтроллеры и сложные вычислительные алгоритмы мощности. Однако такие алгоритмы на самом деле не нужны.

В статье представлены два схематических решения. Первая схема просто иллюстрирует повышающий импульсный преобразователь, в то время как вторая демонстрирует самодельную рабочую схему устройства. Она рекомендуется для более продвинутых экспериментаторов, которые имеют в своем распоряжении осциллограф. Схема может также представлять интерес для студентов и тех, кто просто хочет расширить свои знания в электронике.

Схемы топологии повышающего преобразователя и схема самодельного солнечного преобразователя

Теоретические сведения о повышающем преобразователе

На схеме топологии повышающего преобразователя катушка L1 заряжается, когда транзистор Q1 открыт. Когда транзистор Q1 закрыт, катушка L1 разряжается на батарею через стабилитрон D1. Выполнение данной операции в течение нескольких тысяч раз в секунду в результате приведет к существенному выходному току. Этот процесс также называется индуктивным разрядом. Для его функционирования необходимо, чтобы входное напряжение было ниже выходного. Также при наличии солнечной панели необходимо использовать элемент хранения энергии – конденсатор (C1), который позволит солнечной панели непрерывно выдавать на выход ток между циклами.

Описание принципиальной схемы повышающего преобразователя

Схема состоит из трех основных блоков, включая генератор стробирующих импульсов на базе 555 МОП-интегральной схемы, 555 ШИМ модулятор и операционный усилитель с ограничителем напряжения. 555 серия с каскадным выходом может обеспечить ток около 200мА и позволяет создать отличный маломощный генератор импульсов. 555 ШИМ модулятор является классической генераторной схемой на базе 555 серии. Для регулировки времени разряда конденсатора C3 (время заряда катушки), на вывод 5 подается напряжение величиной 5В.

Ограничение напряжения

Операционный усилитель U1A вычисляет сигнал напряжения батареи, когда разделенное установленное значение напряжения сравнивается с эталонным напряжением величиной 5В. Когда напряжение превышает установленное значение, выход переключается в отрицательном направлении, снижая, таким образом, частоту импульсов ШИМ генератора и ограничивая любой последующий заряд. Это эффективно предотвращает перезаряд.

Питание схемы от солнечной панели

Для предотвращения ненужного разряда батареи, когда солнце не светит, все цепи запитываются через солнечную панель, за исключением делителя напряжения с обратной связью, который потребляет около 280мкА.

MOSFET логического уровня

Поскольку схема должна работать при низких уровнях напряжения (данная схема работает от входного напряжения не ниже 4В), необходимо установить MOSFET логического уровня. Он будет открываться при напряжении 4.5В. Для этой цели я использовал мощный МОП-транзистор MTP3055.

Фиксация напряжения с помощью стабилитрона D2

В этой схеме НЕЛЬЗЯ ОТСОЕДИНЯТЬ батарею, в противном случае MOSFET-транзистор сгорит. Поэтому для его защиты я установил стабилитрон D2 напряжением 24В. Без этого стабилитрона у меня самого сгорело много МОП-транзисторов.

функцияMPPT

Когда напряжение / ток солнечной панели увеличивается, ШИМ генератор повышает частоту импульсов, что в свою очередь приводит к увеличению выходного тока. В то же время, дополнительное напряжение прилагается к катушке, увеличивая, таким образом, ее зарядный ток. В результате повышающий преобразователь действительно «прилагает большие усилия» при повышении напряжения или «ослабевает», когда напряжение снижается. Для максимальной передачи энергии при ярком солнечном свете выполняется регулировка потенциометра R8 так, чтобы зарядный ток батареи был максимальным – это и будет точка максимальной мощности. Если схема работает правильно, то будет наблюдаться очень плоский пик при вращении R2. Диод D3 выполняет автоматическую MPPT регулировку более точно посредством вычитания фиксированного напряжения из разницы напряжения между батареей и средним напряжением через конденсатор C3. В условиях низкого освещения вы обнаружите, что резистор R3 не является оптимальным, однако он не будет полностью исключен из цепочки. Заметьте, что интеллектуальные MPPT контроллеры также могут лучше работать при полном диапазоне, однако это улучшение крайне малоэффективно.

Номиналы компонентов

Схема настроена на напряжение 9В, солнечная панель на мощность 3Вт. Повышающие преобразователи весьма привередливы и не будут работать в широком диапазоне условий – если ваша система использует другие пределы номинальной мощности для солнечной панели, тогда ждите проблемы. Единственные компоненты, которые требуют настройки, катушка L1 и конденсатор C3. Я был удивлен, что частота повторений оказалась очень низкой (около 2кГц). Я начал с катушки индуктивностью 100мкГ, однако схема работает лучше при индуктивности 390мкГ – первоначально я хотел получить около 20кГц. Для наилучшей работы выполняйте заряд катушки от 5 до 10 раз по отношению к току солнечной панели, затем обеспечьте продолжительный период времени (3X), чтобы катушка могла полностью разрядиться. Это обеспечит приемлемую работу, когда напряжение источника питания будет близко к напряжению батареи. Заметьте, что низкоомные катушки обеспечивают наилучшую эффективность. Наибольшая потеря действительно происходит в диоде Шотки, и наименьшая потеря это то, для чего эти диоды предназначены.

Работа при высокой частоте обычно предпочтительна. Это позволит минимизировать размер катушки. Однако для эксперимента, используйте катушку, которая будет работать лучше всего.

Предлагаемые компоненты указаны на схеме. Естественно, зарядное устройство можно приспособить в соответствии со своими требованиями.

Осциллограммы

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 Линейный регулятор

LM78L05

1 LM78L05ACZX В блокнот
U1A, U1B Операционный усилитель

LM358

1 В блокнот
U2, U3 Программируемый таймер и осциллятор

NE555

2 В блокнот
Q1 MOSFET-транзистор

NTD4906N-35G

1 В блокнот
D1 Диод Шоттки

1N5817

1 В блокнот
D2 Стабилитрон

1N5359B

1 В блокнот
D3, D4 Выпрямительный диод

1N4148

2 В блокнот
L1 Катушка индуктивности Boums 2100LL-391-H-RC 1 390 мкГн, 2.4А В блокнот
C1 Электролитический конденсатор 470мкФ х 25В 1 Nichikon UHD1E471MPD6 В блокнот
C2, C4, C5 Конденсатор 0.1 мкФ 3 В блокнот
C3 Конденсатор 0.01 мкФ 1 В блокнот
R1 Резистор

22 кОм

1 В блокнот
R2 Подстроечный резистор

10 кОм

1 В блокнот
R3, R4, R9 Резистор

Poonam Deshpande

Electronic Design

Несложная комбинация из солнечной батареи, нескольких светодиодов и небольшого DC/DC регулятора позволит в дневное время освещать темные углы помещения и одновременно обеспечивать стабилизированным питанием маломощную нагрузку

Лампа, работающая от солнечных батарей только в дневное время, может показаться практически бесполезной, однако в домах и офисах есть множество помещений, остающихся относительно темными даже днем. Эта «дневная лампа» светится от расположенной рядом солнечной батареи, а кроме того, имеет дополнительный стабилизированный источник 0.5 Вт, способный питать небольшие нагрузки, такие как УКВ приемник.

Для питания дневной лампы используется фотогальваническая панель с номинальной мощностью 10 Вт (Рисунок 1). Ее напряжением, в точке максимальной мощности равным 17.3 В, питаются две идентичные светодиодные цепочки (LED1… LED5 и LED6… LED10). Каждая цепочка состоит из пяти белых светодиодов мощностью 1 Вт каждый. Последовательные резисторы R1 и R2 сопротивлением 22 Ом с допустимой мощностью рассеяния 2 Вт задают токи цепочек.

Выход фотогальванической панели через выключатель соединен с входом импульсного стабилизатора напряжения (ИСН) (Рисунок 2). Конденсатор на входе микросхемы преобразователя снижает зависимость яркости свечения светодиодов от изменения тока нагрузки, зависящего от уровня аудио сигнала на выходе УКВ приемника.

Существует довольно много дешевых микросхем импульсных преобразователей напряжения, хорошо подходящих для этого приложения, и три из них очень похожи по степени распространенности, частоте переключения, выходному напряжению, значениям L и C и сопротивлению нагрузки. Это LM3524, MC34063 и LM2575. При прочих равных условиях на преобразователе, основанном на микросхеме , теряется меньше напряжения батареи благодаря меньшему току потребления и более низкому напряжению насыщения силового ключа. Понятно, что именно эта микросхема и была выбрана для источника питания.

Входное напряжение питания (V IN) подается на вывод 6 DC/DC преобразователя MC34063 через выключатель SW (Рисунок 3). Сглаживающий конденсатор C1 емкостью 2200 мкФ, включенный после выключателя, предназначен для минимизации колебаний напряжения, вызванных изменениями интенсивности освещения. Конденсатор C2 емкостью 100 пФ на выводе 5 задает частоту переключения преобразователя 33 кГц.

Выходное напряжение фильтруется элементами L1 и C3. Индуктивность 220 мкГн изготовлена самостоятельно намоткой 48 витков провода на тороидальный сердечник, в качестве которого вполне можно использовать сердечник диаметром 10 мм и высотой 20 мм, извлеченный из старого компьютерного кабеля. Сопротивления резисторов R1 и R2 подобраны так, чтобы выходное напряжение равнялось 5 В. Если на выходе должно быть другое напряжение, следует изменить сопротивление резистора R1. Например, для выходного напряжения 6 В сопротивление R1 должно равняться 27 кОм, а для 4.5 В - порядка 39 кОм. Собранная схема показана на Рисунке 4, а полная система - на Рисунке 5.

Чтобы получить больше света, можно сделать дневную лампу с двумя солнечными батареями, включенными последовательно (Рисунок 6). Однако в этом случае максимальное выходное напряжение фотогальванического источника может превысить 40 В, что является предельным значением, установленным для микросхемы MC34063. Для решения этой проблемы DC/DC преобразователь подключается не непосредственно к выходу солнечной батареи, а к одной из двух светодиодных цепочек. Каждая цепочка состоит из десяти светодиодов с максимальным прямым напряжением 3.5 В. Таким образом, напряжение на цепочке не превышает 35 В.

Ссылки

Материалы по теме

Импульсные преобразователи постоянного тока (DC/DC) DC DC CONVERTER CONTROL CIRCUITS

  • Супер!!! Освещать днем, затемнять ночью!!! Все гениальное просто!!! Теперь я наконец понял, что такое "лампа дневного света"!!!
  • Упомянутое - не наш путь! Наши люди - значительно экономнее! Наш, отечественный юный техник, ученик 5-го класса. покупает динамо-фонарик за 19 грн. (40-45 р. РФ) и... просто кладет его в карман. Экономия - 20 долларов на приобретении у зарубежных капиталистов солнечной панели и всяких диодов-резисторов. http://www.leroymerlin.ua/p/%D0%9B%D...4-307ee51a3035 . Скажете - неудобно? Под руководством пенсионера - бывшего учителя физики из школьного кружка "Очумелые ручки" ученик, выучив таки к 5-му классу таблицу умножения, подсчитывает работу, которую совершает его бабушка, открывая дверь в темную кладовую: 2 кгс усилия он умножает на 1 метр перемещения края двери и получает 20 джоулей. Заглянув в школьный физический кабинет, ученик узнает, что 2 светодиода упомянутого фонарика при напряжении 2 вольта и силе тока 10 миллиампер имеют потребляемую мощность всего 20 мВт! Открыв дверь всего 1 раз можно освещать кладовую целых 50 секунд - энергия в фонарике ведь не пропадает, а заряжает встроенный в китайский фонарик аккумулятор! Теперь вся семья юного дарования во время утренней зарядки открывает и закрывает дверь в кладовую - папа ученика в перерыве футбольного матча пристроил таки динамо-фонарик к двери в кладовую! А младший братик нашего школьника пристроил к этой же двери выключатель от дверки старого холодильника - при закрытой кладовой света в кладовке нету - аккумулятор фонарика не разряжается. Сейчас уже собирают подписи под петициями в Правительство. Если каждый из 100 млн. жителей сэкономит всего по 100 ватт электричества, можно будет навсегда закрыть все электростанции страны! Подробности и дальнейшие действия - https://www.youtube.com/watch?v=WVMolYlx-h8 .
  • А.Райкин хотел привязать к балерине динамомашину...
  • нафига козе баян а попу гармонь? приемник можно питать свободной энергией и нафиг та солнечная панель
  • Приведите рабочий пример...детекторный приёмник,чур,не предлагать.

На счёт эффективности PWM и MPPT контроллеров есть разные мнения, есть разные цифры. У некоторых в пасмурную погоду эффективнее PWM контроллер, а при солнце лучше работает MPPT. У других лучше по всем параметрам MPPT контроллер работает, а есть такие что утверждают что PWM намного лучше. Но не стоит всему сразу верить и принимать однозначную точку зрения, в каждом случае нужно отдельно разобраться почему и как это работает. Есть такие люди которые даже толком пользоваться своими контроллерами не умеют и говорят потом что от они хуже или лучше.

Обычные PWM(ШИМ) контроллеры работают очень просто и через них ток от солнечных батарей проходит почти напрямую, падение мощности на силовых транзисторах очень маленькое. По-этому как только напряжение солнечной батареи превысит напряжение аккумулятора примерно на 0.5-1 вольт то начинается зарядка аккумулятора. Но эти контроллеры не умеют снимать с солнечной панели всю мощность. У солнечных батарей максимальный ток не может превышать свой максимум, например для солнечной панели 12 вольт мощностью 100 ватт ток нагрузки не более 5.7А. И когда напряжение аккумулятора у нас около 13-14 вольт то мощность идущая в АКБ будет 14*5,7=79.8 ватт, если аккумулятор будет разряжен до 12 вольт то мощность будет еще меньше. В данном случае больше 80% от максимальной мощности солнечной панели не получить.

Но если бы напряжение АКБ было бы не 13-14 вольт, а к примеру 17 вольт, то тогда 18*5.7=96.9 ватт. Вообще чтобы при солнце снимать всю мощность от солнечной панели достаточно чтобы в ней было 30 элементов, а не 36, но тогда в пасмурную погоду такая панель практически не будет работать, по-этому делают панели стандарт 36 элементов для 12в акб, при этом в холостую напряжение порядка 21-22 вольта у таких панелей. Но в характеристиках пишут полную мощность панели, а не при работе на 12 вольт АКБ через PWM контроллер.

MPPT контроллеры работают иначе, они имеют DC-DC преобразователь, который из высокого напряжения преобразует его в более низкое увеличивая ток заряда. Контроллер сканирует напряжение и ток солнечной панели, и снимает мощность в той точке где максимальное напряжение солнечной панели при максимальном токе, и далее преобразует в низкое напряжение для заряда АКБ. Например если панель на 12 вольт, то её максимальная мощность будет при 17-18 вольт.

Но так-как в MPPT контроллерах работа происходит через DC-DC преобразователь то он имеет свой КПД, который обычно 90-96%, зависит от режима работы. Сам DC-DC модуль в активном режиме потребляет свою энергию не зависимо от того сколько передаёт а акб. Это типа как инвертор имеет потребление на холостом ходу, так и DC-DC тоже имеет свое потребление. Это говорит о том что если в пасмурную погоду мощность от солнечных панелей будет слишком мала то просто работа DC-DC может потреблять всю эту мощность и в АКБ ничего не будет попадать, или значительно меньше чем напрямую через PWM контроллер.

Для работы DC-DC нужно чтобы напряжение было выше чем выходное примерно на 1.5-2 вольта, это значит что когда на солнечной панели напряжение упадёт до 15 вольт то зарядка прекратится. Но сейчас есть разные MPPT контроллеры, некоторые переходят в PWM режим когда напряжение и ток очень малы. Есть такие что перестают работать при малой мощности и не заряжают АКБ. Некоторые просто не могут при малой мощности определить точку MPPT и постоянно её ищут тратя энергию с АКБ, то-есть не заряжают, а наоборот разряжают на бесполезную работу DC-DC модуля.

У меня сейчас имеются два контроллера, Солар 30 и Фотон 100 50, и я сравнил как они работают начиная с самого рассвета и до появления солнца. Всёэто заснял на видео, и вот что у меня получилось:

Данный тест показал однозначную победу конкретного MPPT контроллера перед конкретным PWM контроллером. Хоть на Солар 30 и написано что он MPPT, но это не более чем маркетинговый ход, это просто PWM контроллер.

В итоге что можно сказать по всему этому. Даже в пасмурную погоду хороший MPPT не уступает PWM, и как только условия позволяют забирать с солнечной панели больше то MPPT контроллер работает значительно лучше. Ну а если от солнечной панели или массива панелей в пасмурную погоду мощность даже теоретическая 1-2% от номинальной, то и смысла нет бороться за эти капли. Лучше снимать до 20% больше при большей освещённости.

Системы электроснабжения с одновременным использованием традиционной подачи тока и электроэнергии от солнца – экономически обоснованное решение для частного домовладения, коттеджных, дачных поселков и производственных помещений.

Незаменимый элемент комплекса – гибридный инвертор для солнечных батарей, определяющий режимы подачи напряжения, обеспечивающий бесперебойность и эффективность работы гелиосистемы.

Чтобы система работала эффективно, нужно не только выбрать оптимальную модель, но и правильно ее подключить. А как это сделать – мы разберем в нашей статье. Также рассмотрим существующие виды преобразователей и лучшие предложения на рынке на сегодняшний день.

Использование возобновляемой энергии солнца в комбинации с централизованным электроснабжением дает ряд преимуществ. Нормальное функционирование гелиосистемы обеспечивает слаженная работа ее основных моделей: солнечных батарей, аккумулятора, а также одного из ключевых элементов – инвертора.

Инвертор гелиосистемы – устройство для конвертации постоянного тока (DC), поступающего от фотоэлектрических панелей, в переменную электроэнергию. Именно на токе напряжением 220 В работает бытовая техника. Без инвертора выработка энергии бессмысленна.

Схема работы системы: 1 – солнечные модули, 2 – контролер заряда, 3 – аккумуляторная батарея, 4 – преобразователь напряжения (инвертор) с подачей переменного тока (АС)

Провести оценку возможностей гибридной модели лучше в сравнении с особенностями работы его ближайших конкурентов – автономных и сетевых «конвертеров».

Сетевой тип преобразователя

Устройство работает на нагрузки общей электросети. Выход от преобразователя подсоединен к потребителям электроэнергии, сети АС.

Схема отличается простотой, но имеет несколько ограничений:

  • работоспособность при доступности переменного тока в сети;
  • напряжение электросети должно быть относительно стабильным и соответствовать рабочему диапазону преобразователя.

Разновидность востребована в частных домах с действующим «зеленым» тарифом на электрификацию.

Параметры выбора инвертора солнечной батареи

Эффективность работы преобразователя и всей системы электрообеспечения во многом зависит от грамотного выбора параметров оборудования.

Кроме вышеописанных характеристик следует оценить:

  • выходную мощность;
  • тип защиты;
  • рабочую температуру;
  • габариты установки;
  • наличие дополнительных функций.

Критерий #1 – мощность прибора

Номинал «солнечного» инвертора подбирается из расчета максимальной нагрузки на сеть и предполагаемого времени автономной работы. В пусковом режиме преобразователь способен отдавать кратковременное повышение мощности на момент ввода в эксплуатацию емкостных нагрузок.

Такой период характерен при включении посудомоечных, стиральных машин или холодильников.

При использовании ламп освещения и телевизора подойдет маломощный инвертор на 500-1000 Вт. Как правило, требуется расчет суммарной мощности эксплуатируемой техники. Нужная величина указывается непосредственно на корпусе прибора или в сопроводительном документе.

Обзор возможностей, режимов работы и эффективности использования многофункционального преобразователя InfiniSolar на 3 кВт:

Проектирование солнечной системы электроснабжения – сложная и ответственная задача. Расчет необходимых параметров, подбор составных компонентов гелиокомплекса, подключение и ввод в эксплуатацию лучше доверить профессионалам.

Допущенные ошибки могут привести к сбоям в системе и неэффективному использованию дорогостоящего оборудования .

Подбираете оптимальный вариант преобразователя для функционирования автономной системы энергоснабжения на солнечной энергии? У вас возникли вопросы, которые мы не затронули в этой статье? Задавайте их в комментариях ниже – мы постараемся вам помочь.

А может вы заметили неточности или несоответствия в изложенном материале? Или хотите дополнить теорию практическими рекомендациями, основываясь на личном опыте? Напишите нам об этом, поделитесь своим мнением.